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ABSTRACT
In this paper we adapt ϵ-lexicase selection, a parent selection strat-
egy designed for genetic programming, to solve many-objective
optimization problems. ϵ-lexicase selection has been shown to per-
form well in regression due to its use of full program semantics
for conducting selection. A recent theoretical analysis showed that
this selection strategy preserves individuals located near the bound-
aries of the Pareto front in semantic space. We hypothesize that this
strategy of biasing search to extreme positions in objective space
may be beneficial for many-objective optimization as the number
of objectives increases. Here, we replace program semantics with
objective fitness to define ϵ-lexicase selection for many-objective
optimization. We then compare this method to multi-objective op-
timization methods from literature on problems ranging from 3
to 100 objectives. We find that ϵ-lexicase selection outperforms
state-of-the-art optimization algorithms in terms of convergence
to the Pareto front, spread of solutions, and CPU time for problems
with more than 3 objectives.
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1 SUMMARY
The multi-objective optimization (MO) community is increasingly
interested in algorithms that can scale to large numbers of objec-
tives. Dealing with large numbers of objectives affects the search
process [4, 5] and as a result, different types of algorithms perform
well [2]. As research has progressed, studies have analyzed the abil-
ity of evolutionary multi-objective optimization (EMO) algorithms
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to find or appapproximate Pareto-optimal solution sets for problems
with up to 6 [12], 50 [1], and more recently, 100 objectives [9].

At the same time that EMO research has moved to larger sets
of objectives, the genetic algorithm (GA) and genetic program-
ming (GP) communities have shown strong interest in the so-called
“multi-objectivization" of single-objective problems [6]. In GP, the
idea of restructuring search drivers around program semantics,
defined as the outputs or behavior of a GP program, has gained
traction [10]. Rather than aggregating performance across training
instances, semantic methods can re-define the problem as a set of
smaller objectives for driving search. One such method is lexicase
selection [11], which uses program semantics to filter the popu-
lation via randomized orders of training cases at each selection
event. By doing so it is able to adapt selection pressure to subsets
of training cases that are harder to solve.

A variant of lexicase selection [11] known as ϵ-lexicase selec-
tion was introduced to apply lexicase selection to continuous error
spaces for symbolic regression [8]. A recent theoretical analysis
considered ϵ-lexicase selection through a multi-objective lens [7].
It showed that ϵ-lexicase selects individuals located near bound-
aries of the Pareto set defined by the population’s error vectors.
In this sense, ϵ-lexicase selection demonstrated an instance of a
multi-objective treatment of regression with promising results.

In this work1, we evaluate the performance of ϵ-lexicase selection
as a many-objective optimization algorithm, shown in Algorithm 1.
Our experimental study consists of a comparison of ϵ-lexicase se-
lection to two EMO algorithms: NSGA-II and HypE. We compared
these methods on the scalable DTLZ problems [3] using 3 to 100 ob-
jectives. Performance was assessed using the convergence measure
(CM) and the inverted generational distance (IGD), as recommended
in [2, 9]. The results of this experiment are shown in terms of rank-
ings in Figures 1 and 2. We also compared wall clock runtimes in
Figure 3.

The results make a compelling case for ϵ-lexicase selection, es-
pecially for 5 to 100 objectives. In this range, it finds solution popu-
lations with better convergence measures than HypE or NSGA-II
(p<0.01) with no significant difference from HypE in terms of IGD,
a measure that takes into account spread along the Pareto front.
In addition to these promising results, ϵ-lexicase selection finishes
in significantly less time than the other methods for 25 to 100
objectives.

Future work should consider more adaptations of ϵ-lexicase
selection to incorporate concepts from other EMOs. In a broader
sense, the success of ϵ-lexicase selection suggests that it is useful
to promote solutions near Pareto-set boundaries that perform well
on randomized subsets of other objectives.
1Code: http://github.com/lacava/emo-lex
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Algorithm 1 : ϵ-Lexicase Selection applied to individuals x ∈ N
with objective values fi (x ), fi ∈ F .
Selection(N , F ) :
P ← ∅ ♢ parents
for fi ∈ F : ♢ get ϵ for each fi

ϵi ← λ(fi )
do N times:
P ← P ∪ GetParent(N , F , ϵ ) ♢ add selection to P

GetParent(N , F , ϵ ) :
F ′ ← F ♢ objectives
S ← N ♢ selection pool
while |F ′ | > 0 and |S | > 1:
fi ← random choice from F ′ ♢ pick random fi
f ∗i ← min fi (x ) for x ∈ S ♢ best score on fi in pool
for x ∈ S: ♢ filter pool
if fi (x ) > f ∗i + ϵm then
S ← S \ {x }

F ′ ← F ′ \ {fi } ♢ remove fi
return random choice from S
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Figure 1: Average CM rankings of each algorithm as a func-
tion of number of objectivesm.
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Figure 2: Average IGD rankings of each algorithm as a func-
tion of number of objectivesm.
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Figure 3: CPU time for each algorithm as a function of num-
ber of objectivesm.
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